Semilinear fractional elliptic equations involving measures

نویسندگان

  • Huyuan Chen
  • Laurent Véron
چکیده

We study the existence of weak solutions to (E) (−∆)u+g(u) = ν in a bounded regular domain Ω in R (N ≥ 2) which vanish in R \Ω, where (−∆) denotes the fractional Laplacian with α ∈ (0, 1), ν is a Radon measure and g is a nondecreasing function satisfying some extra hypotheses. When g satisfies a subcritical integrability condition, we prove the existence and uniqueness of a weak solution for problem (E) for any measure. In the case where ν is Dirac measure, we characterize the asymptotic behavior of the solution. When g(r) = |r|r with k supercritical, we show that a condition of absolute continuity of the measure with respect to some Bessel capacity is a necessary and sufficient condition in order (E) to be solved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semilinear fractional elliptic equations with gradient nonlinearity involving measures

We study the existence of solutions to the fractional elliptic equation (E1) (−∆)u + ǫg(|∇u|) = ν in a bounded regular domain Ω of R (N ≥ 2), subject to the condition (E2) u = 0 in Ω, where ǫ = 1 or −1, (−∆) denotes the fractional Laplacian with α ∈ (1/2, 1), ν is a Radon measure and g : R+ 7→ R+ is a continuous function. We prove the existence of weak solutions for problem (E1)-(E2) when g is ...

متن کامل

Elliptic Equations Involving Measures

3 Semilinear equations with absorption 19 3.1 The Marcinkiewicz spaces approach . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Admissible measures and the ∆2-condition . . . . . . . . . . . . . . . . . . . 26 3.3 The duality method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Bessel capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 Sharp...

متن کامل

ar X iv : 0 81 0 . 06 47 v 1 [ m at h . A P ] 3 O ct 2 00 8 Elliptic Equations Involving Measures ∗

3 Semilinear equations with absorption 19 3.1 The Marcinkiewicz spaces approach . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Admissible measures and the ∆2-condition . . . . . . . . . . . . . . . . . . . 26 3.3 The duality method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Bessel capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 Sharp...

متن کامل

Optimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces

Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013